Acute Respiratory Distress Syndrome

ARDS

- Lung complication resulting in dangerously low blood oxygen
- ARDS is often a result of other health complications

Clinical Manifestations

- Related to systemic inflammatory disease
- Bilateral pulmonary infiltration
- Increased pulmonary capillary permeability
- Decreased PaO2/FiO2 ratio

Severity Stages

- New classification system
 - Better predictor of mortality
- Three classifications:
 - Mild PaO2/FiO2 <300 mmHg
 - Acute lung injury
 - Moderate <200 mmHg
 - Severe <100 mmHg

75% of cases are classified moderate or severe

Incidence

- 9% incidence of ARDS and ALL in the ICU
- United States: 64:100,000
- Europe: 4.9-13.5:100,000
- American Lung Association: 1.5-75 cases/100,000 individuals
 - 25-40% of cases end in death

Increasing Incidence of ARDS cases

Life Expectancy

- Dependent of cause of ARDS
 - Patients with fewer chronic diseases have increased survival
 - Sepsis induced ARDS has increased risk of mortality
 - Pulmonary fibrosis is found to be a major factor
- 1988: 50-70% mortality
- 2008: 25-40% mortality
- Death typically results from MODS from a lack of oxygen rather than lung failure

Decreasing mortality risk for ARDS patients

Etiology

- Direct injury:
 - Trauma
 - Aspiration
 - Inhaling Chemicals
 - Obstructed airways

- Indirect injury
 - Blood transfusion
 - Sepsis
 - Pneumonia

Signs and Symptoms

- Depending on the initial trauma specific S/S can occur
 - Ex. Pneumonia \rightarrow cough
- Difficulty breathing
 - Two-pillow orthopnea: support from pillows to in order to easy breathing that occurs from the recumbent position
- Rapid breathing
- Shortness of Breath
- Low blood oxygen level

S/S continued

- Trachea shift: trachea shifts from its normal position because of fluid accumulation in the pleural space
- Jugular distention: jugular veins bulge because of increased central venous pressure
- Bruit: "noise" unusual sound blood makes when passing an obstruction
 - Medical professionals will look for bruit sounds to R/O other diseases

Pathophysiology

- Early phase: exudative (oozing)
 - Occur as a result of direct or indirect lung insults
 - Acute inflammatory stage with proinflammatory cytokines, neutrophils, and overall impaired endothelial cell barrier function
 - Barrier between the capillaries and the alveoli allow water movement into the alveoli
 - Most patients will survive this stage
- Later phase: fibroproliferative
 - Alveolar damage
 - Collagen deposition appears in 3 days; Fibrosis manifests within 3 weeks
 - Pulmonary fibrosis resulting in 55% of ARDS deaths

Chest X-ray of ARDS patient

Normal

Risk Factors

- Old age
- Shock
- Liver failure
- Patients with diabetes have half the risk for developing ARDS compared to patients without diabetes

Quality of Life

- Poor muscle function
- Pulmonary function returns to normal or near normal at approx. 6 months
 - Decrease carbon monoxide diffusion capacity
- Memory loss: due to brain damage from lack of oxygen
- Fatigue
- Weakness
- Alopecia
- Pain from chest tubes
- Entrapment Neuropathy
- Heterotopic Ossification

Medical Therapy

Diagnosis

- Challenging because ARDS has nonspecific characteristics
 - 48% of patients with autopsy-prove ARDS had ARDS diagnosis in their charts

Rule out other diseases

- Left heart failure
 - Check left heart function
- Acute lung injury
 - Less severe impairment of oxygen; PaO2/FiO2 <300 mmHg

Goals of Treatment

- Support breathing
- Treat underlying cause
- Medications to treat infections, reduce inflammation, and remove fluid from the lungs.

Health Impact

- 25-40% of cases are fatal
- By 7-10 days a patient has died or have been weaned off treatment

Collapsed Lung

- Pneumothorax
- Air escapes from the lung and fills the space outside the lung.
- Smokers, COPD, asthma, cystic fibrosis, tuberculosis

Collapsed Lung

- Increased Risk
 - Smokers
 - COPD
 - Asthma
 - Cystic fibrosis
 - Tuberculosis

- Symptoms
 - Sharp chest pain
 - Shortness of breath
 - Bluish color
 - Easy fatigue
 - Rapid heart rate

Treatment

- Small pneumothorax
 - Can go away on its own
- Large Pneumothorax
 - Chest tube
 - Surgery
 - Pleurodesis

Surgery

- Treat collapsed lung
- Stop fluid buildup

Pulmonary Fibrosis

Scarring throughout the lungs

Prevention of ARDS

No drug has proved beneficial in prevention

Corticosteroids

- High-dose corticosteroids
 - Patients with ARDS persisting for at least 7 days had no benefit in 60 day mortality
 - Patients treated 14 days after onset had worsened mortality with corticosteroid therapy
- Methylprednisone
 - No survival advantage shown
 - short-term clinical benefits included improved oxygenation and increased ventilator-free and shockfree days
 - more likely to experience neuromuscular weakness, but the rate of infectious complications was not increased.

Corticosteroids Summary

- may be considered a form of rescue therapy
- may improve oxygenation and hemodynamics
- does not change mortality
- corticosteroids increase mortality in patients who have had ARDS for >14 d

Statins

Somovstatin

- Preadmission use of statins was associated with a reduction in 30-day and 1-year mortality of a cohort of 12,483 critically ill patients.
- Patients under statin treatment developing MODS have a better outcome than age- and sex-matched MODS patients without statin therapy.

Table 2

Effects of statins and low-dose corticosteroids versus placebo on the ventilatory status and outcome of patients with ARDS

Variables	Statins (80 mg/day)			Low-dose corticosteroids (1 mg/kg/day)			
	Simvastatin ⁹⁵ (n = 30)	Placebo(n = 30)	P	Methylprednisolone ⁹⁶ (n = 63)	Placebo(n = 28)	P	
PaO ₂ /FiO ₂ day 7	199±76	199±76	NS	256±19	179±21	0.006	
LIS day 7	2±0.78	2.1 ± 0.7	NS	2.14 ± 0.12	2.68 ± 0.14	0.004	
Ventilator free days	8.2 ± 8.1	9.1±8.7	NS	16.5 ± 10.1	8.7 ± 10.2	0.001	
Duration of ventilation	18.6 ± 14.6	18.6±14.6	NS	5 (3-8)	9.5 (6-19.5)	0.002	
ICU stay				7 (6-12)	14.5 (7-20.5)	0.007	
ICU survival (%)	21 (70)	21 (70)	NS	50 (79.4)	16 (57.4)	0.03	
Hospital stay	51.2±39.3	48±37.4	NS	13 (8-21)	20.5 (10.5-40.5)	0.09	
Hospital survival (%)	19 (63)	19 (63)	NS	48 (76.2)	16 (57.1)	0.07	

Data are presented as mean ± SD, no. (%), and median (interquartile range).

TNF and IL-1

 Small sepsis trials suggest a potential role for antibody to tumor necrosis factor (TNF) and recombinant interleukin (IL)-1 receptor antagonist.

Prostacycline

- Prostacycline
 - Inhaled prostacycline also has not been shown to improve survival.

Nitric Oxide

- Inhaled nitric oxide did not change mortality rates in adults with ARDS.
- Improves transient oxygenation

Side Effects

- Short-term
- Long-term
 - Muscle wasting and weakness

Mechanical Ventilation

Ventilation

- A ventilator doesn't treat a disease or condition
- GOAL: provide breathing support, relieve respiratory muscles of their work

Ventilation Benefits

- Get oxygen into the lungs
- Help people breathe easier relieve respiratory muscles
- Provide breathing support

High vs. Low Tidal Volume

High Tidal Volume

- Over-distend alveoli
- Worsen lung injury
- Inflammation

Low Tidal Volume

- Decreased ventilatorassociated lung injury
- Increases survival rate

Recommended to use Low Tidal Volume for ARDS

Positive End-Expiratory Pressure (PEEP)

- Airway pressure is maintained above atmospheric pressure at the end of exhalation
- Purpose: increase volume of gas remaining in the lungs at the end of expiration
 - Decrease shunting of blood through lungs and improve gas exchange

Prone Positioning

- Supine: weight of heart and abdominal organs on lungs contribute to low compliancy
- Prone: improves oxygenation but does not improve survival
 - Higher incidence of complications (i.e. pressure sores and obstruction of the endotracheal tube)

Weaning from Mechanical Ventilation

- Those who wean successfully have less morbidity and mortality
- Spontaneous breathing trials (SBTs)
- Progressive decreases in the level of pressure support during pressure support ventilation

The Cochrane Library

- <u>http://onlinelibrary.wiley.com.erl.lib.byu.edu/doi/10.1002/1465185</u>
 <u>8.CD003844.pub4/full</u>
- Primary outcome
 - Mortality

Secondary Outcomes

- Development of multiple organ failure
- Duration of mechanical ventilation
- Stay in ICU
- Long term health related quality of life
- Long-term cognitive complications

Hemolung RAS

- CO2 removal and less invasive
- Similar to dialysis
- Uses less blood flow
- Smaller catheter
- One component system
- Active mixing
- Battery operated (patient
- can move around)

Hemolung RAS

- 2012
 - Successful pilot studies
 - Arterial pCO₂ levels reduced by 28% within 24 hours
 - lessened dyspnea
 - improved clinical status
 - effective and stable CO₂ removal on the order of 50% of metabolic production
 - No unexpected adverse events
 - All patients were able to avoid intubation
 - Still undergoing clinical trials

• Energy Needs:

- Calculate with indirect calorimetry (IC)
- Obese individuals : 11-14 kcal/kg or 60%-70% of target value
- Why: High caloric intake increases levels of CO_{2.}

- Carbohydrate:
 - Been shown that concentrations of Carbohydrates not as important as calories provided
- Protein:
 - 1.5-2.0 g/kg
- Fat:

Give enough to provide the right amount of calories

- What to monitor and watch closely
 - CO₂
 - Phosphate
 - Vitamin A
 - Vitamin C
 - Vitamin E
 - Meet requirements for Essential Fatty Acids

- Enteral Nutrition
 - Helps maintain GALT
 - Less likely to overfeed
 - Reduces ICU and hospital mortality
- Parental Nutrition
 - More likely to overfeed
 - Used for patients with: Shock, Nonfunctional Gut, and Peritonitis

- Supplementation of Omega 3 over required amounts not effective.
- Do not use RQ for substrate mix
- Consider BMI

Case Study: DH

- Age: 65
- Male
- Married lives with wife (62)
- 4 children not living in the area
- Retired manager of local grocery chain

Anthropometrics

- Height: 5' 4"
- Weight: 122 lbs
- BMI: 20.9
- UBW: 135 lbs
- IBW: 130 lbs
 - 8 lbs under

Case Study: DH

Biochemical

- Hemoglobin 13.2 (14-17)
- Hematocrit 39 (40-54)
- ABG pH 7.2 (7.35-7.45)
- ABG pCO₂ 65 (35-45)
- ABG CO₂ content 35 (25-30)
- ABG pO₂ 56 (>80)
- ABG HCO₃⁻ 38 (24-28)

Clinical

- Extremities: cyanosis, 1+ pitting edema
- R femoral bruit present
- Pale skin
- Harsh inspiratory breath sounds noted over right chest – absent sounds on left
- Use accessory muscles at rest

Case Study: DH

Dietary

- General appetite: decreased over past several weeks
- Usual diet:
 - B: Egg, hot cereal, bread or muffin, hot tea (with milk and sugar)
 - L: soup, sandwich, hot tea (with milk and sugar)
 - D: small amount of meat, rice, 2-3 kinds of vegetables, hot tea (with milk and sugar)

History

- Diagnosed with emphysema more than 10 years ago
- Tobacco use: 2 PPD for 50 years
- Alcohol use: 1-2 drinks 1-2 x/week

PES Statement

Inadequate caloric intake related to increased needs from history of COPD and Acute Respiratory Distress Syndrome as evidenced by decrease appetite and weight loss.

Oxepa®

- Abbott Nutrition product for modulating Inflammation in Sepsis, ALI, and ARDS
- Benefits:
 - Improves oxygenation
 - Decrease time on ventilator
 - Decreases length of stay in ICU
- For sole-source nutrition

Sample Diet

- Oxepa 25 kcal/kg for 24 hrs
- 55kg (122lbs) 1375 kcals
- Protein needs: minimum 82.5 g (1.5-2.0g/kg)

	Amount	Calories (kcal)	% in total Calories
СНО	97 g	388	27
Protein	57.3 g	250.8	18
Fat	86 g	774	55
Fluid	917 ml	0	0
Total Calories/24 hours		1412	