Nutrition Support Calculations

1. Determine the following for Ensure at $68 \mathrm{ml} /$ hour (Note: when working with volumes of formula for enteral formula, it is expressed in total volume/ ml not as cans or ounces. For example: 1200 ml 's, not 5 cans)
a. \quad Total volume: $(68 \mathrm{~mL}) *(24$ hours $)=\mathbf{1 6 3 2} \mathbf{~ m L} /$ day
b. Total calories: $(1632 \mathrm{~mL} /$ day $) *(1.06)=\mathbf{1 7 3 0}$ kcals
c. Protein (grams): $(9 \mathrm{gm} \text { of protein } / 237 \mathrm{~mL})^{*}(1632 \mathrm{~mL})=\mathbf{6 2}$ grams of protein
2. Determine the following for Jevity1.2 at $120 \mathrm{ml} /$ hour:
a. \quad Total volume $(\mathrm{ml}):(120 \mathrm{~mL}) *(24$ hours $)=\mathbf{2 8 8 0} \mathbf{~ m L} /$ day
b. Total calories: $(2880 \mathrm{~mL} / \text { day })^{*}(1.2)=\mathbf{3 4 5 6}$ kcals
c. Total protein (g): (13.2 grams of protein $/ 237 \mathrm{~mL})^{*}(2880 \mathrm{~mL})=\mathbf{1 6 0}$ grams of protein
d. Free water $(\mathrm{ml}): 191 \mathrm{~mL} / 237 \mathrm{~mL}=80 \%$ is free water; $(2880 \mathrm{~mL} /$ day $) * .80=\mathbf{2 3 2 1}$ $\mathbf{m L}$ of free water
e. Fiber $(\mathrm{g}):(4.3 \text { grams of fiber } / 237 \mathrm{~mL})^{*}(2880 \mathrm{~mL} /$ day $)=\mathbf{5 2}$ grams of fiber
3. How much Perative would need to be delivered to provide about 2,500 calories and about 130 protein?

Total volume in ml's: $(2,500 \mathrm{kcals} / 1.3)=\mathbf{1 , 9 2 3} \mathbf{~ m L}$
Perative has 15.8 grams of protein $/ 237 \mathrm{~mL}$
4. Calculate the following for Procalamine at 100 ml x 24 hours.
a. Protein (grams): 29 grams of protein $/ 1000 \mathrm{~mL} * 2,400 \mathrm{~mL}=70$ grams of protein
b. Total calories: $(100 \mathrm{~mL} * 24$ hours $)=(2400 \mathrm{~mL} /$ day $) *(.246)=\mathbf{5 9 0}$ calories
c. Total non-protein calories (NPC): $(3 \mathrm{grams} / 100 \mathrm{~mL}) *(2,400 \mathrm{~mL})=72 \mathrm{~g} * 4.3=$ 310 NPC
5. Calculate how much Impact is necessary to provide 80 grams of protein. What is the total volume, calories and free fluid that it would provide?
a. Total volume (ml): (14 grams of protein $/ 250 \mathrm{~mL}$); (80 grams of protein $/ 14$) $* 250 \mathrm{~mL}=\mathbf{1 4 2 9} \mathbf{~ m L}$
b. Total calories: $(1428.5 \mathrm{~mL})^{*}(1.0)=\mathbf{1 4 2 9}$ kcals
c. Free fluid (water) (ml): $1428.5^{*} .8=\mathbf{1 2 1 5} \mathbf{~ m L}$ of free fluid
6. How many cans of Nutren 2.0 are necessary to provide 1250 calories? How much protein does it provide ? How much free fluid? (when supplements are consumed PO, they are usually expressed in cans/day)
a. \# of cans: $1250 \mathrm{kcals} / 500 \mathrm{kcals}$ per can= $\mathbf{2 . 5}$ cans
b. Protein (g): 2.5 cans*20grams of protein= $\mathbf{5 0}$ grams of protein
c. Free Fluid: 2.5 cans $=625 \mathrm{~mL}^{*} .70=\mathbf{4 3 8} \mathbf{m L}$ of free fluid (about $\mathbf{1} 3 / 4$ can)
7. Determine the following for someone who consumed 3 and one-half cans of Boost.
a. Calories: $(240 \mathrm{kcals} / \mathrm{can}) * 3.5=\mathbf{8 4 0}$ kcals
b. Protein (g) : (10 grams of protein/can $)^{*} 3.5=\mathbf{3 5}$ grams of protein
8. How much of the following nutrients would be provided in 2 Glucerna meals bars?
a. Kcals: $(220 \mathrm{kcals} / \mathrm{bar}) * 2=440$ kcals
b. Protein: (10 grams of protein/bar)*2=20 grams of protein
c. Overall \% of DV: $\mathbf{4 0 \%}$
9. For the following Standard TPN solution, calculate the requested information: 2800 ml of $50 \% \mathrm{CHO}$ and 8.5% AA.
a. Protein (grams): $\left(1400^{*} .085\right)=\mathbf{1 1 9}$ grams
b. Total NPC: $(1400 * .5) * 3.4=\mathbf{2 3 8 0} \mathbf{N P C}$
c. Total calories: $(119 * 4)+(700 * 3.4)=\mathbf{2 8 5 6}$ calories
10. Calculate the nutritional provisions in a standard solution of $2,450 \mathrm{ml} 50 \% \mathrm{CHO}, 10 \%$ protein, and 10% lipids (500 ml 's) QOD
a. Protein (grams): $\left(1225^{*} .10\right)=\mathbf{1 2 3}$ grams
b. Total NPC: 2082.5 calories of $\mathrm{CHO}+275$ calories from lipids $=\mathbf{2 3 5 8} \mathbf{N P C}$
c. Total calories: $\mathbf{2 8 4 8}$ calories
11. Calculate the following: $1,200 \mathrm{ml}$ of $70 \% \mathrm{CHO} ; 1,000 \mathrm{ml}$ of 8.5% protein; and 20% lipids (in 500 ml bag) given QOD to a 74 kg person.
a. Protein (grams): (1000*.085) $=\mathbf{8 5}$ grams
b. Total NPC (average/day): 2856 kcals of CHO +500 kcals from fat $=\mathbf{3 3 5 6}$ kcals
c. Total calories: 3356 NPC +340 kcals protein $=\mathbf{3 6 9 6}$ calories
d. Fat load: $(56 / 74)=\mathbf{0 . 7 5} \mathbf{g} / \mathbf{k g}$
e. \quad CHO load: $840,000 / 74 / 1440=7.8$
f. What is the max amount of CHO for this person: $7=(x / 74 / 1440) ; x=745,920 \mathrm{mg}=$ 746 grams
12. MC is starting on TPN (wt. 61 kg). You determined his needs to be $2,650 \mathrm{kcals} /$ day and protein needs at 91 grams. He will get 10% lipids 3 times/week. Write a TPN order using 60% dextrose and $8.5 \% \mathrm{AA}$ (include protein calories) to meet his needs:
a. Volume CHO (60\%): $\mathbf{1 0 0 5} \mathbf{~ m L}$
b. Volume Pro (8.5\%): $\mathbf{1 0 7 0} \mathbf{~ m L}$
c. Average daily lipid calories: $\mathbf{2 3 5 . 7}$ kcals
d. Fat load: $21 \mathrm{~g} / 61 \mathrm{~kg}=\mathbf{0 . 3 4}$
e. \quad CHO load: $603,000 \mathrm{mg} / 61 \mathrm{~kg} / 1440=\mathbf{6 . 8}$
13. Design a TPN formula to provide 1840 calories and 65 grams of protein for a 59 kg person. Remember the minimum lipid requirements. Make sure the person receives adequate fluid.

	$\%$	Volume (ml)		
CHO	40%	955 mL		
Protein	8.5%	765 mL		
Fat	10% solution	Volume: 250 mL	Frequency: QoD	
Fat load	0.43			
CHO load	4.5			

14. JT is receiving both Procalamine and Jevity 1.0. He is tolerating Jevity at only $40 \mathrm{ml} /$ hour which doesn't meet his protein needs of 90 grams. How much Procalamine does he need and at what rate over 24 hours to meet his total protein needs?
a. Procalamine (grams protein): (10.4 grams $/ 237 \mathrm{~mL}$) $960=42 ; 90-42=48$ grams
b. Procalamine (volume): 48 grams of protein $=29 \mathrm{~g} / 1000 \mathrm{~mL} * \mathrm{X}=\mathbf{1 6 5 5} \mathbf{~ m L}$
c. Rate of Procalamine: $(1655 \mathrm{~mL} / 24 \mathrm{hr})=\mathbf{6 9} \mathbf{~ m L} /$ hour
c. Kcals provided by Jevity: 1018 kcals
15. Find a product that will provide 1,200 calories and >60 grams pro in less than $1,000 \mathrm{ml}$ and osmolality less than 600 mOsm . How much must be delivered?

$\mathbf{1 , 0 0 0} \mathbf{~ m L}$ of Vital 1.2

CD: 1.2
Protein: 75 grams
$1,000 \mathrm{~mL}$
Osmolality: 425
16. Calculate the following for Jevity 1.5 half strength (diluted in equal water-i.e. $1 / 2$ of the total volume is added water) at $83 \mathrm{ml} /$ hour over 22 hours.
a. Calories: $(913 \mathrm{~mL} * 1.5)=\mathbf{1 3 7 0}$ calories
b. Protein: $(15.1 \text { grams } / 237 \mathrm{~mL})^{*} 913 \mathrm{~mL}=\mathbf{5 8}$ grams of protein
c. \quad Total volume: $\mathbf{1 8 2 6} \mathbf{~ m L} /$ day (Jevity 1.5 and water)
d. Free fluid from Jevity 1.5: $(180 / 237)^{*} 913 \mathrm{~mL}=\mathbf{6 9 4} \mathbf{~ m L}$
e. Total free fluid provided (added water plus Jevity free fluid): $\mathbf{1 6 0 6} \mathbf{~ m L}$
17. Design a tailor-made formula providing 112 grams protein, 2,875 total calories, and 3,100 ml 's total fluid ($\pm 100 \mathrm{ml}$'s) for an 89 kg person. Complete the table below.

	Initial Stock concentration	Total grams	Total volume
Amino acids	8.5%	112 grams	1320 mL
Dextrose	D41.5	632 grams	1530 mL
Fat	10%	25 grams	250 mL
CHO load	5		
Fat load	0.28		
Final AA concentration	3.6%		
Final dextrose concentration	20.4%		
Total final volume	$3,100 \mathrm{~mL}$		

